tex記法

数式を表示する(tex記法) - はてなダイアリーのヘルプ
AMS-LaTeXは使えたり使えなかったり...
以下出力例

[tex:f^\prime(x)=\lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}]

f^\prime(x)=\lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}

[tex:f(x)=\int_{-\infty}^x e^{-t^2}dt]

f(x)=\int_{-\infty}^x e^{-t^2}dt

[tex:\nabla\cdot\boldsymbol{B} = 0]

\nabla\cdot\boldsymbol{B} = 0

[tex:\nabla\times\mathbf{E}+\frac{\partial\mathbf{B}}{\partial t}=\mathbf{0}]

\nabla\times\mathbf{E}+\frac{\partial\mathbf{B}}{\partial t}=\mathbf{0}

[tex:\nabla\cdot\bm{D}={\rho}]

\nabla\cdot\bm{D}={\rho}

[tex:\nabla\times\mathbf{H}-\frac{\partial\mathbf{D}}{\partial t}=\mathbf{j}]

\nabla\times\mathbf{H}-\frac{\partial\mathbf{D}}{\partial t}=\mathbf{j}

[tex:i\hbar\frac{\partial{}}{\partial{}t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle]

i\hbar\frac{\partial{}}{\partial{}t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle

[tex:\delta S=\sum_{i=1}^N\left\[\frac{\partial L}{\partial\dot{q}_{k}}\delta q_k\right\]_{t_1}^{t_2}+\sum_{i=1}^N\int_{t_1}^{t_2}\left(\frac{\partial L}{\partial q_k}-\frac{d}{d t}\frac{\partial L}{\partial \dot{q}_k}\right)\delta q_k dt]

\delta S=\sum_{i=1}^N\left[\frac{\partial L}{\partial\dot{q}_{k}}\delta q_k\right]_{t_1}^{t_2}+\sum_{i=1}^N\int_{t_1}^{t_2}\left(\frac{\partial L}{\partial q_k}-\frac{d}{d t}\frac{\partial L}{\partial \dot{q}_k}\right)\delta q_k dt

[tex:D={f\in L^2(\R, dx) : \frac{df}{dx} \in L^2(\R, dx)}]

D={f\in L^2(\R, dx) : \frac{df}{dx} \in L^2(\R, dx)}

[tex:\begin{bmatrix} a&b&c \\ d&e&f \end{bmatrix}]

\begin{bmatrix} a&b&c \\ d&e&f \end{bmatrix}

[tex:A = \large\left(\begin{array}{c.cccc} &1&2&\cdots&n\\ \hdash 1&a_{11}&a_{12}&\cdots&a_{1n}\\ 2&a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ n&a_{n1}&a_{n2}&\cdots&a_{nn} \end{array}\right)]

A = \large\left(\begin{array}{c.cccc} &1&2&\cdots&n\\ \hdash 1&a_{11}&a_{12}&\cdots&a_{1n}\\ 2&a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ n&a_{n1}&a_{n2}&\cdots&a_{nn} \end{array}\right)

[tex:\normalsize\left(\large\begin{array}{GC+23} \varepsilon_x\\ \varepsilon_y\\ \varepsilon_z\\ \gamma_{xy}\\ \gamma_{xz}\\ \gamma_{yz}\end{array}\right) {\Large=} \left\[\begin{array}{CC} \begin{array}\frac{1}{E_{\fs{+1}x}}&-\frac{\nu_{xy}}{E_{\fs{+1}x}}&-\frac{\nu_{\fs{+1}xz}}{E_{\fs{+1}x}}\\ -\frac{\nu_{yx}}{E_y}&\frac{1}{E_{y}}&-\frac{\nu_{yz}}{E_y}\\ -\frac{\nu_{\fs{+1}zx}}{E_{\fs{+1}z}}&-\frac{\nu_{zy}}{E_{\fs{+1}z}}&\frac{1}{E_{\fs{+1}z}}\end{array}&{\LARGE 0}\\ {\LARGE 0}&\begin{array}\frac{1}{G_{xy}}&&\\ &\frac{1}{G_{\fs{+1}xz}}&\\&&\frac{1}{G_{yz}} \end{array} \end{array}\right\] \left(\large\begin{array} \sigma_x\\ \sigma_y\\ \sigma_z\\ \tau_{xy}\\ \tau_{xz}\\ \tau_{yz} \end{array}\right)]

\normalsize\left(\large\begin{array}{GC+23} \varepsilon_x\\ \varepsilon_y\\ \varepsilon_z\\ \gamma_{xy}\\ \gamma_{xz}\\ \gamma_{yz}\end{array}\right) {\Large=} \left[\begin{array}{CC} \begin{array}\frac{1}{E_{\fs{+1}x}}&-\frac{\nu_{xy}}{E_{\fs{+1}x}}&-\frac{\nu_{\fs{+1}xz}}{E_{\fs{+1}x}}\\ -\frac{\nu_{yx}}{E_y}&\frac{1}{E_{y}}&-\frac{\nu_{yz}}{E_y}\\ -\frac{\nu_{\fs{+1}zx}}{E_{\fs{+1}z}}&-\frac{\nu_{zy}}{E_{\fs{+1}z}}&\frac{1}{E_{\fs{+1}z}}\end{array}&{\LARGE 0}\\ {\LARGE 0}&\begin{array}\frac{1}{G_{xy}}&&\\ &\frac{1}{G_{\fs{+1}xz}}&\\&&\frac{1}{G_{yz}} \end{array} \end{array}\right] \left(\large\begin{array} \sigma_x\\ \sigma_y\\ \sigma_z\\ \tau_{xy}\\ \tau_{xz}\\ \tau_{yz} \end{array}\right)